Nulling Interferometry and Planet Detection

Michelson Interferometry Summer School August 11,1999

> Gene Serabyn JPL

Planet Detection

Indirect Methods (= perturbations to stellar parameters):

Stellar Position

Astrometry

- Stellar Velocity

Radial Doppler Shifts \rightarrow

- Stellar Intensity

Transits, Microlensing

Direct Methods (= direct detection of planetary radiation)

Direct Imaging

Large Telescopes

Starlight Suppression → Coronagraphy,

Nulling Interferometry

Optimal waveband for direct planet detection

Visible Light:

Reflected Stellar Flux

Contrast = $10^9 - 10^{10}$

Thermal Infrared:

Thermal Planetary Emission

Contrast = $10^6 - 10^7$

Mid-infrared Spectroscopy

- Search for an atmosphere: CO₂
- Search for water
- Search for life
 (O₃ in lieu of O₂)

Comparison of approaches

- 1 AU ⇔ 1.0 arcsec at 1 pc
 0.1 arcsec at 10 pc
- 10-m aperture diffraction-beam at 10 m = 0.2 arcsec
- To see an exact Earth-analog at 1 AU from its star:

Nulling Interferometry: $\theta < \lambda/D$ (< few 0.1 arcsec)

stellar distance ≈ 10 pc

Coronagraphy: $\theta > 3 - 5 \text{ }\lambda\text{/D} \text{ } (> 1-2 \text{ arcsec})$

stellar distance ≈ 1 pc

Direct imaging: $\theta > 10 - 20 \text{ }\lambda\text{D}$

telescope diameter > 20 m

 Only nulling interferometry can see in close enough to stars in the mid-infrared.

E-Ervidami
Greenes etal
Submin
TCMT

- cold Kniperbelt-like
metual

Pluto's orbit

Comparison of Flux Levels

Distance = 10 pc Wavelength = $10 \mu \text{m}$

Signals:

G2 star	2.2 Jy
Exozodiacal emission	200 μJy
Jupiter	2 μЈу
Earth	0.3 μJy

Backgrounds:

Zodiacal emission	800 μJy
Sky (emissivity = 0.1)	30 Jy

Mid-IR atmospheric window: 8-13.5 μm

Nulling Roadmap

Target at 10 pc

- Keck: Characterize exozodiacal MIR emission around nearby stars.
 - In our solar system, integrated zodiacal light at 10 μm is
 10⁻⁴ of solar flux
 10⁻⁶ of background
 - Null star and remove background.
- SIM: demonstrate optical nulling with nm-level control, as needed by TPF.
 -10⁻⁴ null @ 1 μm ⇔ 10⁻⁶ null @ 10 μm
- TPF: detect planets at 10 μm in the presence of stellar, zodi, and exozodi signals. 10⁻⁶ null across MIR (7-20 μm).

Nulling Interferometry

Combine the light from two telescopes 180° out of phase.

Bracevell & Mac Phie (1979) I carus

At stan position, E, -Ez = 0 for all 1's. CHANGE

70 1 AAAA OPD
=0 fa V=1

General achromatic nulling requirements

- For a deep, achromatic null (SIM 10⁻⁴, TPF 10⁻⁶), simultaneous cancellation of the E field must occur at all wavelengths in the band
- High degree of matching required:
 - E fields in the two input beams opposite in direction.
 - Intensities matched.
 - Relative path delays zero.
- Matching must be maintained across the passband.
- BW evolution: SIM 20%, Keck 30 50%, TPF 100 %.
- Single spatial mode operation to remove wavefront aberrations:
 - Wavefront quality limits null depth to 1-S, or about 4%.
 - Single mode fiber (optical) or pinhole (MIR) spatial filter required.
- Experimental validation of nulling concepts necessary.

Achromatic nulling

Normal `constructive" 2-beam interferometer:

$$I_{\rm out} = I_{\rm in} (1 + V \cos \varphi) / 2$$

Bandwidth limitation to destructive interference minima:

$$\frac{I_{\min}}{I_{\max}} = \frac{1}{2} \left(1 - \operatorname{sinc} \frac{\pi}{2} \frac{\Delta \lambda}{\lambda} \right)$$

- For bandwidths = 5, 10, 20, 30, 40, 50%, deepest destructive interference = 0.05, 0.2, 0.8, 1.8, 3.2, 5%.
- Deeper cancellation requires achromatic approach,
 e.g. a relative field flip:

$$I_{\text{out}} = I_{\text{in}} (1 - V \cos \varphi) / 2$$

Null Depth Definition

- Null depth: $N \equiv I_{\min} / I_{\max}$ where I_{out} and I_{in} are the nuller throughputs in the destructive and constructive states, repsectively.
- · In terms of visibility, for perfect phase matching,

$$N = (1-V)/2$$
.

For V=1 and small phase errors, φ,

$$N = (\phi / 2)^2$$

- Both V<1 and $\phi \neq 0$ limit null depth and so drive the requirements.
- Example: For N = 1e-4, V = 0.9998.

Null Depth Definition

- Null depth: $N \equiv I_{\min} / I_{\max}$ where I_{out} and I_{in} are the nuller throughputs in the destructive and constructive states, repsectively.
- · In terms of visibility, for perfect phase matching,

$$N = (1-V)/2$$
.

For V=1 and small phase errors, φ,

$$N = (\phi/2)^2$$

- Both V<1 and $\phi \neq 0$ limit null depth and so drive the requirements.
- Example: For N = 1e-4, V = 0.9998.

OPD Accuracy Naeded:
$$\varphi = 2\pi \times_{opo} \Lambda$$

$$N = \left(\frac{\pi \times_{opo}}{\lambda}\right)^{2}$$

$$\frac{\times_{opo}}{\lambda} = \frac{1}{\pi} \sqrt{N}$$

How deep is your null?

· Fundamental limit: Nonzero stellar diameter limits N to:

$$N = \frac{\pi^2}{16} \left(\frac{\theta_{dia}}{\lambda / b} \right)^2$$

- For a G star @10 pc, with an angular diameter of 0.93 mas,
 N=3e-5 at 0.7 mu requires a projected baseline of < 1.1 m.
- A reduction in flux by 1e-4 corresponds to 10 magnitudes:
 On SIM, this leaves a flux of order 1000 ph/s/aperture.
- · For a 6 star @ 10pe @ Kech N ~ 10-3

Wavefront Cleanup

- Aberrated wavefronts prohibit simultaneous field cancellation across the wavefront. N limited to about 1-S.
- Wavefront cleanup required for deep nulls
- Wavefront cleanup can be effected by means of a spatial filter in the output focal plane, which transmits only the core of the point-spread function.
- Limits nulling to a single spatial mode of the telescope.

Sources of null degradation

- Finite Stellar Diameter Static
- Nonunity visibility:
 - Wavefront errors removed by spatial filtering Static
 - Polarization rotation mismatch Static
 - Intensity mismatch: transmission asymmetries, Static pointing jitter induced scintillations Fluctuating
- Nonzero phase:
 - Optical path jitter
 - Differential s-p polarization delay (d1-d2 below)
- Chromatic Effects

Fluctuating

Static

Static

Electric Field Manipulation

- Electric field reversal can be effected by means of:
- Geometric field flip: rotational shearing interferometer
- Through-focus field flip: (RSI)
- Phase retardation: chromatic waveplate

Beam Combination in an NBC

Orthogonal Rooftop Mirrors

- Electric field vectors orthogonal to rooftop axis flipped by 180 degrees.
- Electric vectors parallel to rooftop axis unchanged.
- Output beams have polarizations rotates 180 deg. w.r.t. each other.
- Output apertures are rotated 180 deg. w.r.t. each other.

Interferometer Nuller

Inputs

Twin Outputs on either side of beamsplitter

Additional Complications

- Output images and electric fields rotated by 180 deg.
- Asymmetric: one arm has 2 s reflections, other has 2 p refl.
- Add fold mirror in each arm to symmetrize reflections:

Implementation: rotational shearing interferometer

- Advantages:
- Nearly perfect symmetry
- Relies solely on flat mirrors
- Achromatic, geometric π phase flip
- High R/T ratio tolerance at 2-pass b.s. (nulling outputs are both balanced RT outputs)
 - (R near 0.5 only maximizes throughput)
- · Drawbacks:
- High quality rooftop reflectors needed
- · Both:
- 2 outputs

Implementation 2: Phase shift through focus

- Passing through focus inverts aperture, adds achromatic 180 deg phase shift.
- Replace rooftops by cat's eyes:
 - one secondary flat, at focus
 - other secondary curved, prior to focus
- Advantages:
 - Achromatic 180 degree phase flip
 - Phase flip orthogonal to OPD
 - Relaxed b.s. R/T requirements
- Disadvantages:
 - Differing angles of incidence on secs.
 - Point focus on flat secondary

Implementation 3: Waveplate (UofA)

- Dielectric plate compensates for b.s.; also adds 90 degree phase shift.
 Additional 90 deg. occurs at 50/50 b.s.
- Advantages:
 - simple layout
 - no wavefront inversion
 - fewer outputs
- Challenges:
 - Requires highly accurate coatings:
 nearly perfect R/T match needed
 - Requires high-accuracy tailoring of compensator refractive indices.
 - Phase flip and OPD not orthogonal.

Environmental Improvements in New Lab:

8 % BW W.L. Null (1-pol).

511 desires 104, 207 BW

Status

Laser diode (0.5% BW):

•	Transient	nulls	during	OPD	fluctuations:	1/200,000
---	-----------	-------	--------	-----	---------------	-----------

• Stable (average over 10 sec) null: 1/50,000

Controlled null (peak over minute timescales): 1/10,000

Single-polarization, 8% BW white light:

•	Stable	(average over	10 sec)	null:	1/3,000
---	--------	---------------	---------	-------	---------

• Best transient null: 1/7,000

OPD Control

- Control one output by means of another
- · Control one waveband by means of another
- Use metrology

SIM OPD control

- Approach: The nuller has 2 outputs. Use 1 output to control the 2nd.
- · How?

An OPD increment in one arm of the nulling combiner affects the 2 nuller outputs in opposite senses:

Output 1 has E_1 ahead of E_2 ; output 2 has E_2 ahead of E_1 .

- I.e., an internal nuller path delay causes the two nuller outputs to depart from null in opposite directions (opposite relative phases).
- An external path delay (i.e., prior to the nulling combiner) always advances one beam relative to the other.
- The 2 types of offsets can be combined to leave one nuller output on null, while the second output is offset λ/4 away in OPD, where plenty of photons and a linear intensity-OPD relation are available for control.

Pessimistic SNR for exozodiacal signal

- Optimistic value: SNR(4 hr; 10 Zodi; including modulation) = 50
- Pessimistic case: $\lambda = 10 \ \mu m$, $\Delta \lambda / \lambda = 0.3$, emissivity = 0.65, total system efficiency = 0.046, cold throughput = 0.14, $\Delta \Omega = \lambda^2$

Detection rates:

- G star at 10 pc (2 Kecks) = 9e7 photons/s
- Stellar leakage thru null = 9e4 photons/s
- 10 solar zodis (2 Kecks) = 8e4 photons/s
- Background (2 Kecks) = 1.8e10 photons/s
- Noise (1 sec) = 1.35e5 photons
- SNR (1 sec; 10 solar Zodi; including modulation) = 0.3
- Pessimistic case: For emissivity at dewar = 0.65, SNR = 36
- Use only 9 m diameter; pessimistic SNR drops to 25

3/23/98

Signal Modulation

- Baseline rotation (slow): fringes sweep across zodi/planet
- Spatial chopping:

 nulling removes star; chop on/off zodi/planet
- OPD modulation for multiple baselines
 many variations: rapid scan, λ/4 OPD offsets

(Theory)

Multiple Baselches:

- Want Deeper, Broader Nall, but rapid rise in transmission to see plenets

- Multiple bareliner provide 04, 06 Nulls
- Want to brech symmetry of fringes,

 to tall nutrich side of the star the planet lier

The Future

- Broaden BW
- Move to MIR
- 2 Polarizations
- White Light Stabilization
- Control Architectures
- P. it et high altitude
- po it in space.